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J. Phys. A: Math. Gen. 19 (1986) 291-304. Printed in Great Britain 

Cluster number scaling in two-dimensional percolation 

D C Rapaportt 
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel 

Received 4 June 1985 

Abstract. The cluster distribution for site percolation on the triangular lattice is studied 
at and close to p c  using Monte Carlo techniques. Lattice sizes range as high as 2.56 X 10" 
sites, and periodic boundary conditions are imposed instead of the customary free houn- 
daries in order to reduce residual Enite-size effects. The results support scaling to leading 
order both at and near pc. Corrections to scaling are also examined, but though a value 
for the associated exponent is obtained, the results suggest that a description based on a 
single exponent may not be adequate. 

1. Introduction 

In order to examine the critical behaviour of two-dlmensional site percolation clusters 
(Stauffer 1979, Essam 1980) recent Monte Carlo simulations have been compelled to 
consider lattices of ever-increasing size (Hoshen et al 1979, Margolina ei a1 1984). In 
a recent letter (Rapaport 1985) it was demonstrated that the use of extremely large 
lattices-containing over 10" sites-was not in itself particularly helpful unless accom- 
panied by periodic boundary conditions rather than the free boundaries customarily 
used. The results for a large simple quadratic (SQ) lattice at the critical probability pc  
obtained using both periodic and free boundaries were compared and, whereas in the 
periodic case the evidence in support of scaling (Stauffer 1979) was convincing, the 
same could not be said for the free boundaries where the support was far from 
conclusive. 

The present paper describes a Monte Carlo study of site percolation on the triangular 
(TRI) lattice, again using periodic boundaries. The advantage of the TRI lattice over 
the SQ is that its p c  is known exactly (pc=$) .  The emphasis is on a range of p lying 
very close to pc, and in fact one of the conclusions is that, provided periodic boundaries 
are used, the convergence of the cluster distribution as lattice size is increased is 
sufficient to suggest that very large lattices are not a necessity away from pc-a 
conclusion that does not follow from the free boundary results. Away from p c  there 
is therefore little point in investing undue effort in considering such large systems and 
the effort is better expended on generating multiple realisations of smaller systems in 
order to improve the statistics. 

Scaling theory (Stauffer 1979) predicts that at pc  the s dependence of the number 
of s-site clusters is n , ( p c )  cc s - ~ ,  while for p f p c  but sufficiently close, n , ( p ) /  n,(pc) = 
f o ( z ) ,  with the scaling variable z equal to ( p  -pc)su .  There are also corrections which 
are required for small s ;  a more detailed discussion appears later. Monte Carlo 
techniques will be used to derive numerical estimates for n , ( p )  which will then be 
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used to test the accuracy of the scaling predictions. The computational techniques-in 
part well known and in part new-are discussed in § 2. The results themselves together 
with the scaling tests appear in 0 3. 

It is interesting to observe that while periodic boundaries are the accepted norm 
in essentially all condensed matter simulations with the purpose of reducing the 
undesirable effects of finite system size, for some reason this has not been the case for 
percolation. In fact, doubts have even been raised as to whether periodic boundaries 
would lead to any modification of the cluster distribution at intermediate cluster sizes 
where the scope for testing scaling is greatest (Margolina et a1 1984). The SQ lattice 
simulations (Rapaport 1985) establish beyond doubt that the choice of boundary 
conditions has a significant effect on the cluster distribution, a result which holds true 
in general. The computations involved in treating the periodic case are slightly more 
complicated, but the improved results more than justify the effort involved. 

2. Computational methods 

The techniques involved in generating the cluster distributions for lattice percolation 
have been described at length in the literature (Hoshen and Kopelman 1976, Margolina 
et a1 1984). In this section we will therefore only briefly review those aspects of our 
method which can be found elsewhere, and in greater detail the extensions that have 
been made for the present calculations. Only the two-dimensional lattice is addressed, 
but similar techniques could be used in three dimensions. 

The basic scheme for constructing the clusters of a single lattice realisation is to 
scan the lattice sites systematically, row by row, with a series of random numbers 
obtained from a reliable source being used to declare the sites occupied with a given 
probability p and vacant otherwise. The previously scanned neighbour sites of an 
occupied site are then examined; if the occupied neighbours all belong to the same 
cluster then the current site is assigned to this cluster, while if several distinct clusters 
are involved a merging of clusters must take place. 

Since the feature of interest here is the distribution of cluster sizes (i.e. the numbers 
of sites per cluster), and not the metrical properties, the only information that must 
be retained for each cluster that is only partially constructed, apart from its current 
size, is a list of the sites belonging to it in the most recently scanned row of the lattice. 
It follows from this that in order to process a row of sites the only information required 
about the lattice (apart from the cluster sizes) is contained in the immediately preceding 
row; indeed the total number of lattice sites of interest at any instant is equal to the 
row length, and comprises the sites already scanned in the current row and those sites 
of the previous row adjacent to sites of the current row yet to be scanned. Periodic 
boundaries additionally require that information concerning sites on all the other lattice 
edges be retained. This represents an enormous saving in the amount of storage 
required for the problem and makes possible the analysis of large lattices. 

In order to handle the potentially time-consuming task of merging existing clusters 
that occur in the course of the generation, Hoshen and Kopeman (1976) proposed a 
scheme known as ‘multiple labelling’ which can be summarised as follows: each 
occupied site in the current/previous row is assigned a label indicating the serial 
number of the cluster to which it belongs. Different label values can correspond to 
the same cluster, the smallest such value being the ‘proper’ label. For each assigned 
label m-a new label value is used whenever a site is encountered that is a potential 
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start of a new cluster-a quantity E ,  is defined so that if m is a proper label E ,  
represents the current cluster size, whereas for the other label values E ,  is given a 
negative value chosen to ensure that the set {-E,} for a given cluster forms a sequence 
of pointers eventually leading to the proper label. This approach means that two 
partial clusters can be merged by simply altering a single pointer and no relabelling 
of the sites is necessary. The pointer sequences turn out to be surprisingly short; 
measurements made at pc  (the results are dependent on p )  indicate that an average of 
only 0.1 pointer references are required per site, while the maximum number of 
references amounted to only four. 

Due to the frequent merging of partial clusters many more cluster labels will be 
assigned than the actual number of clusters (i.e. proper labels), and it will be necessary 
to compress the set of labels at regular intervals in order to conserve storage. This 
compression is actually carried out together with a test for complete clusters, i.e. clusters 
no longer present in the most recently scanned row; the final sizes of these clusters 
are included in a summary histogram and their labels freed for re-use. It is at this 
stage that different processing is required for free and periodic boundaries ; while 
clusters that extend to a free boundary are deemed to terminate there, periodic 
boundaries imply a toroidally mapped lattice and cluster wraparound must be allowed 
for. 

The generation technique used here differs from the earlier approaches in that the 
lattice is produced as a series of slabs which are subsequently combined to form lattices 
of various sizes with either free or periodic boundaries. Those clusters formed during 
slab construction which meet any of the slab edges cannot be completed until the slabs 
are combined to create the required lattice. Slab combination entails scanning pairs 
of slab edges that are brought into adjacency and merging those clusters that extend 
over more than one slab. The multiple labelling technique is used to handle this stage 
of the calculation as well. Four slabs of edge B combine to produce a region of edge 
2B, four such regions produce one with edge 4B, and so on. When the required lattice 
size is reached, either the opposite edges are brought into adjacency to produce periodic 
boundaries, or the clusters are truncated at the extreme edges corresponding to free 
boundaries. While generating a single lattice with edge L, 4 lattices of edge L/2 are 
obtained at no additional cost, 16 with edge L/4, etc. The use of slabs as an intermediate 
step in the generation means that the most time-consuming part of the calculation, 
slab generation, requires relatively modest amounts of computer storage: large amounts 
of storage are only required for combining the slabs which is a relatively short process. 
If the entire lattice is generated at once (Margolina et a1 1984) the computations are 
at the same time both time and storage consuming, a not especially desirable feature. 

There is another advantage inherent in the slab approach. The 32 bit integer word 
length of most (although not all) computers limits the maximum cluster size to 23' - 1 
sites; a floating-point value (of suitable precision) could of course be used but this 
would add to the computation time. Provided the slab size is chosen to prevent such 
large clusters from appearing there will be no problem with integer overflow; large 
clusters can then only appear at the slab combination stage and these are accommodated 
by representing the sizes as double-precision floating-point quantities (permitting 56-bit 
accuracy) during these relatively brief calculations. An alternative means of overcoming 
this problem is of course to find a computer with an enlarged range of integers, a 
solution adopted by Margolina et a1 (1984). 

The simulations were carried out on an IBM 3081 computer. Most of the software 
was written in FORTRAN, with the exception of the code responsible for scanning a 
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single row which wa5 written in assembly language for a 40% gain in speed. Generation 
of a single slab with edge length B = lo4 requires 5 min of processor time at p 10.5 
(the times are dependent on p ) ;  this is slightly faster than the SQ lattice calculation 
primarily due to the fact that the p values of interest here are lower, and this appears 
to outweigh the increased coordination number of the TRI lattice. An L = 16 x lo4 
lattice contains 256 slabs and therefore requires about 21 hours of computation; the 
computations required to join the slabs amount to a couple of minutes only. The 
calculation of a single large lattice realisation yields a series of smaller lattices at the 
same time. 

The biggest lattice generated contains 2.56 x 10" sites and is half as large again as 
the largest TRI lattice previously reported (Margolina et al 1984), although it will 
become apparent subsequently that it is not so much the extreme size that is of 
importance but the ability to incorporate periodic boundary conditions. The computa- 
tion rate is approximately double that of the earlier work; a program typical of that 
used previously is to be found in Binder and Stauffer (1984), although the present 
program is considerably longer. 

The reliability of the random number generation is a vital element in a calculation 
of this kind. A high-speed generator capable of producing the large batches of uniformly 
distributed random variates needed here is one based on the shift register principle. 
The generator described by Kirkpatrick and Stoll (1981) was used after modification 
to produce integers in the range (0, 224 - 1 )  rather than floating-point numbers, again 
with a view to maximising speed. The site occupancy test was then based on a 
comparison of a random variate with that integer value closest to 224p. 

Two separate realisations of the largest L = 16 x lo4 lattice were constructed at p c .  
At other values of p ,  as described in the following section, the largest L was 8 x lo4 
and only a single realisation was produced for each. While it is possible to process 
even larger lattices, it will become apparent from the results already available that a 
mere doubling of L will not lead to any significant improvement in the quality of the 
predictions. 

3. Results 

3.1. Scaling theory 

When applied to the cluster number distribution, scaling theory (Stauffer 1979) states 
that the average number of clusters of s sites, normalised per lattice site, at site 
occupation probability p is 

n , ( p ) = s - ' l f o ( z ) + s - n f i ( z ) + .  . .I, (1) 

where the scaling functions fo and f, are analytic for sufficiently small z and where z, 
the scaling variable, is defined as 

z = ( p  - p c ) s O .  (2) 
The second term in ( 1 )  is the first of a series of higher-order corrections that enter at 
small s. When p = p c  

(3) 
Two of the exponents introduced in (1) and (2), (J and T,  are believed to be known 

exactly in two dimensions. The thermal and magnetic eigenvalues for the d = 2, Q = 1 

n, (p , )  = s-'Fo(o) +s-nfl(o) +. . .I. 
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case of the Q-state Potts model are y ,  = i, yh = (den Nijs 1979, Pearson 1980). These 
eigenvalues are related to the usual percolation critical exponents by d / y ,  = 2 - a, 
( d  - y h ) / y r  = p, and since 2 - a and p are the exponents of the singular parts of the 
zeroth and first moments of n, (Stauffer 1979) it follows that (+ = E, T = z. (Note that 
T > 2 in order that the first moment Xsn, be convergent; its value is p . )  The Q = 1 
Potts model corresponds to bond percolation but the exponents are expected to apply 
to the site problem as well. The third exponent in ( l ) ,  R,  has no well established value 
associated with it, although a number of suggestions have been put forward (Margolina 
et a1 1984). In the analysis that follows, the ‘exact’ values of (T and T will be used; 
prior to their becoming available the best estimates were 0.39 and 2.05 respectively 
(Hoshen et a1 1979) derived from the series values of the exponents p and y (Sykes 
et a1 1976), estimates which are very close to the rational fractions. 

In order to improve the count statistics of the larger clusters, the individual n, are 
grouped along the lines proposed by Hoshen et a1 (1979); the quantities actually 
studied are thus 

2 h - 1  

c ’ = 2 k - l  
(4) k G J p )  = c ns’r  s = 2 .  

The scaling prediction for this partial sum at p c  can be derived by integrating (3) over 
the appropriate range of s ;  the result to leading order is 

(5) 

s / a  is the geometric mean of the size range covered. 

G , ( p )  = (2(T-1)/2 -2- (  7 - 1 ) ’ 2 ) S ~ ~ T j ~ ( o ) / (  7 - I) ,  

where sAV = [2k-’(2k - l)]”* 

3.2. Results at p c  

A double logarithmic plot of G,(p)  as a function of sAV is shown in figure 1 for p = p c  
and a nearby value on either side. At p c  the data points lie on a straight line for a 
range of sAV covering four orders of magnitude. The measured gradient, which from 
(5) is the value of 1 - T, corresponds to T = 2.06, a value close to the exact = 2.055, 
while the intercept with the vertical axis at log(sAv) = 0 leads to fo(0) = 0.030. The 
deviations from linearity at small s (< lo2) signal the appearance of scaling corrections, 
while the large s (> lo6) breakdown corresponds to a distortion in the distribution of 
the larger clusters due to finite lattice size (in this instance L = 8 x lo4). Figure 1 also 
makes it clear that there is no linearity when p differs from p c  by even 1%;  this is to 
be expected because fo( z )  is implicitly dependent on s, but it means that an alternative 
approach to estimating 7 will be required for p # p c  (see further). 

The Monte Carlo estimates for G,(pc) can be compared with the exact enumeration 
values (Sykes and Glen 1976). The average number of isolated sites ( k  = 1) for the 
two L = 16 x lo4 realisations differs from the exact value by 0.01 YO. A similar difference 
was found by Margolina et aZ(l984) for free boundaries; while the choice of boundary 
affects the entire cluster distribution, the significant changes (for the lattice sizes 
considered) are first noticed for clusters of a few hundred sites while for k =  1 the 
difference is typically 0.004% (Rapaport 1985). The deviations for k = 2 and 3 from 
the exact values are also very small. Agreement does not hold for the total cluster 
count however, which, in the case of exact enumeration, must be obtained by numerical 
extrapolation. The Monte Carlo values (normalised per site) for the two largest 
realisations are 0.017 625 and 0.017 627; these are just below the Margolina et aJ (1984) 
estimate of 0.017 630 2 0.000 02, presumably due to the absence of fragmented boundary 
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Figure 1. Log-log plot of G,(p )  as a function of sAv for L = 8 x lo4 and several p values: p = 
0.496 (A), 0.5 (B), 0.504 (C). 

clusters, but significantly different from the series estimate 0.0168 * 0.0002 (Domb and 
Pearce 1976). 

Previous Monte Carlo simulations have employed an alternative form of data 
presentation that emphasises any (dis)agreement with scaling and clearly shows the 
range of cluster sizes over which scaling applies (Hoshen et a1 1979, Margolina er al 
1984, Rapaport 1985). Consider the quantity 

which includes all clusters from s to the largest present. The expected asymptotic 
behaviour again follows from integration of (3), 

(7) N,(p,)  = s+-' 

In the actual numerical evaluation corresponding to (7) the factor sT-l was replaced 
by s&' of the lowest range (i.e. k value) present in the sum; the estimate of fo(0) 
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obtained in this way will be a factor of (fi)'-' greater than that of Margolina et a1 
(1984). In order to maintain consistency with the earlier work, s in (8) will be taken 
to mean sAv. 

Equation (8) implies the existence of a plateau in N,(p,)  provided s is sufficiently 
large. Figure 2 shows that the plateau indeed occurs and extends over an almost 1000 
fold range of cluster sizes for the largest lattice ( L  = 16 x lo4), although the plateau is 
well established even for L=2x1O4 (note that the cluster sizes are shown on a 
logarithmic scale). The analysis uses the exact value of T. The deviations from the 
plateau at both extremes reflect the same breakdown of scaling observed in figure 1.  

The present results should be contrasted with those of Margolina et a1 (1984) where 
free boundaries were used; there only a hint of a plateau is observed even for the 
largest lattice size ( L  = 130 000) and the size dependence is much more pronounced. 
In our previous treatment of the SQ lattice (Rapaport 1985) a similar dependence on 
boundary conditions was found. 

Figure 3 examines the sensitivity of the plateau to the choice of p ( L  = 8 x lo4 and 
fewer realisations than in figure 2). A shift away from p c  by only 1 part in 5000 is seen 
to destroy the plateau; the plateau at p c  is an indication of the onset of the infinite 
cluster. On the SQ lattice the plateau provides a useful criterion for estimating pc. 

0.06 

0.04 za 

0.02 

1 I I I 

r n  
7 

I I I I 
0 5 10 15 20 25 

I og 2 (SA") 

Figure2. Plot of N,(p,) against sAv (note the logarithmic scale) for several lattice sizes: A, L = 
IO4, B, 2 X lo4, C, 4 x lo4, D, 8 x lo4, E, 16 X lo4. 
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Figure3. PlotofN,(p)forL= 8 X 104andvaluesofpveryclosetop,:A,p =0.4999;B,0.5000: 
C. 0.5001. 

The measured plateau height is 0.04; this leads to f o ( 0 )  = 0.029 which agrees with 
the value from figure 1 and the estimate of Margolina et af (1984) for free boundaries. 
However, unlike the present calculation which yields f o ( 0 )  directly, the lack of a well 
established plateau for the free boundary case means that f o ( 0 )  can only be obtained 
by fitting (8)-including the unknown scaling correction exponent R as well as both 
f o ( 0 )  and f,(O)-to the data; the fit succeeds because boundary effects are unimportant 
over the range of s involved. 

The scaling correction itself can be studied by introducing the quantity 

AN, = f o ( o ) /  ( 7 - 1 - N, (9) 
which measures the deviation from the plateau. It follows from (8)  that 

ln(AN,) = I n  - In s 

and so both R and f , ( O )  can be determined graphically. 
Figure 4 shows these log-log plots for several possible values of plateau height 

close to that observed: the results are essentially independent of lattice size (for the 
largest lattices). The most linear of the plots shown corresponds to height 0.040 15, 
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Figure 4. Log-log plot of the deviations from the plateau (AN,) at small s; the plateau 
heights shown are A, 0.0400; B, 0.0401; C ,  0.040 15; D, 0.0402; E, 0.0403. 

slightly above the measured value. Even assuming this to represent the true plateau 
height (implying that the measured height is still 1 part in 300 away from convergence) 
there remains a certain amount of curvature which, as with the SQ lattice (Rapaport 
1985), cannot be eliminated. The points plotted cover the range k = 3 (cluster sizes 
4-7) to 10 (sizes 512-1023); the range is limited at small s by the fact that even if (8 )  
is correct it omits expected higher-order terms, while at larger s the deviations AN, --* 0 
and so errors in n, will be magnified here. A linear fit to the points k = 5-8 yields 
R = 0.74 whereas for k = 7-10, R = 0.71. These values are above the SQ lattice value 
(0.64) but, as was pointed out there, it is not clear that the results are describable in 
terms of only a single correction exponent and that a more complex behaviour may 
be involved. The values off,(O) corresponding to the two SZ estimates are -0.030 and 
-0.027 respectively, leading to ratios If,(0)I/fo(O) equal to 1.03 and 0.93. The uncertainty 
here is considerable, just as in the previous analysis (Margolina et a1 1984) where the 
results obtained by series analysis are also surveyed, but there is no basic disagreement. 

3.3. Results near pc  

In the neighbourhood of p c  the entire scaling expression (1) is open to examination. 
Ideally, it ought to be possible to demonstrate that the exponent T (and perhaps even 
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R) do not vary with p and that the functions fo and f, depend on z alone. Previous 
work (Hoshen et a1 1979, Margolina e t  a1 1984) has tended to support these claims 
(although SZ is apparently p dependent), but it is difficult, if not impossible, to establish 
the scaling result (1) with any degree of certainty given that it may only represent a 
reasonable numerical fit to the data sufficiently close to p c .  

From the preceding results at p c  it is clear that once it is recognised that improved 
convergence is obtained with periodic boundary conditions, there is little point in 
considering extremely large lattices unless very close to pc. Indeed a systematic study 
of scaling for various 2~ lattices could probably be carried out using lattices no larger 
than, say, L = 4 x lo4; such a study has yet to be undertaken. In the present paper we 
confine our attention to a very narrow region around p c  and ask what can be learned 
about scaling from the very large lattices. 

That the simple s - ~  dependence of n , ( p )  no longer applies for even the slightest 
shift of p away from pc  is clear from figures 1 and 3, and it will not therefore be 
possible to study the exponent T without accounting for the scaling function fo(z). 
The quantity to be considered then is the ratio 

Vs(P) = n s ( p ) / n s ( p c )  (11) 

which, assuming 7 to be p independent, and s to be sufficiently large to eliminate 
corrections, should be a function of the single variable z. 

The variation of In u , ( p )  with z, assuming the result U = % ,  is shown in figures 5 
and 6 for p above and below p c .  To reduce known large- and small-cluster deviations 
only values of s in the range z6-2l9 are included. The prediction is that u s ( p )  =fo(z), 
a result that seems to hold quite well over the range -0.15 < z < 0.1 ; the fact that v , ( p )  
depends only on z implies that 7 is independent of p as hoped. The results here apply 
for p within 1% of pc ,  but similar results for a much smaller lattice (L=4000) exist 
for a range of p extending 10% to either side of pc  (Hoshen et a1 1979). Near z = 0 
the variation of lnfo(z) is linear, suggesting that to leading order fo(z) = with a 
measured gradient corresponding to a, = 7.0 above pc and 6.7 below-there is a k0.2 
uncertainty in both values. Clearly, if fo(z) is analytic at the origin then the same 
initial gradient should apply for p on either side of p c  and the results certainly allow 
for this possibility. The curvature that appears for larger Iz/ can be attributed to Info( z )  
being a polynomial in z, and in fact Hoshen et a1 (1979) have carried out a fit using 
a cubic polynomial in which the coefficient of the linear term is 7.1 in agreement with 
the a, obtained here. 

The z dependence of u , ( p )  close to z = 0 is shown on an expanded scale in figure 
7. In order to demonstrate the breakdown of pure z dependence at small s, the graph 
includes data from even the smallest clusters. The data points for small s no longer 
lie on a common curve and the curves for different p no longer extrapolate to the 
origin; note that the corresponding points are omitted from a similar graph in Hoshen 
e t  a1 (1979). The deviations are to be expected given the scaling assumption (1). The 
gradient estimated from this graph corresponds to a, = 7.2, consistent with the earlier 
values. 

Given the difficulty in obtaining a meaningful value of the correction exponent R 
at p c  for both TRI and SQ lattices, the chances of successfully studying R at other values 
of p seem remote because of the additional variable z. After attempting an analysis 
of this kind, Margolina et a1 (1984) arrived at a similar conclusion; while a value of 
about 0.7 was consistent with the data it proved impossible to improve the accuracy 
or determine the p dependence. 
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Figure 5. Plot of u , ( p )  (on a logarithmic scale) as a function of the scaling variable z for 
values of p above p c :  p = 0.5005 (O), 0.501 (01, 0.502 (V), 0.504 (m). Only clusters with 
sizes between 26 and 219 are included. 

3.4. Other aspects 

In  addition to showing that Info(z) could be fitted satisfactorily with a cubic polynomial 
in z, Hoshen et a1 (1979) also found that above pc ,  In U, a s‘, with 5 = i. This result is 
inconsistent with an analytic scaling function since it impies that Info( z )  a z ~ ’ ’ ~ .  
However, if one examines the data on which this conclusion is based it is obvious that 
the range of s involved (approximately 1-500) lies in the region where scaling correc- 
tions are important and hence no simple z dependence need be expected. If corrections 
are allowed there is no longer any objection to retaining the analytic scaling functions. 
The fact that it can be proved that 6 = 1 - l / d  = f (for d = 2)  at sufficiently large p 
(Kunz and Souillard 1978) has no a priori bearing on the critical behaviour. 

Below pc  each n , ( p )  has a maximum at some value s=smax(p);  this reflects the 
initial appearance of clusters of any specified size as p increases and  their eventual 
disappearance as they merge into even larger clusters (including the infinite cluster). 
In the present work p has been restricted to within 1% of p c  and the lowest value of 
s,,, observed is approximately lo5; a factor of ten closer to pc  results in a shift of s,,, 
to =3 x lo6. The statistics for these large clusters do not allow an  analysis along the 
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Figure 6. Plot of v , ( p )  as in figure 5 but for p below p , :  p =0.4995 (0). 0.499 (O) ,  0.498 
(V), 0.496 (N). 

lines of previous work (Margolina et a1 1984), which was conducted for p more than 
10°/o below pc  where much smaller values of smax were involved. Here again a detailed 
study of this kind does not require extremely large lattices provided periodic boundaries 
are used. 

One last comment is appropriate here. In order to overcome the problem of the 
absence of a definite plateau when free boundaries are used, Margolina et al (1984) 
carry out a finite-size scaling calculation in an attempt to recover the plateau (by 
introducing an additional L-dependent scaling function that involves the cluster fractal 
dimensionality as an exponent), while at the same time expressing doubts whether the 
use of periodic boundaries would improve the situation. The present results clearly 
put these doubts to rest; free boundaries strongly distort the cluster distribution, 
whereas for periodic boundaries there is so little lattice-size dependence that a finite-size 
scaling treatment is neither necessary nor possible. 

4. Summary 

The use of periodic boundaries has been shown to lead to a cluster size distribution 
that is in close agreement with scaling at pc .  The leading order correction at p c  is not 
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Figure 7. Plot of u , ( p )  as a function of z over a limited range of z withp both below and above 
p c ;  the different sets of points are for lp -pel = 0.0005 (O), 0.001 (0). 0.002 (V), 0.004 (a). 

so readily analysed, and from the results it is not clear that a description that uses a 
single additive correction term provides a satisfactory explanation of the data. Close 
to pc  the results again support scaling to leading order. The exponents 7 and U that 
arise in the scaling theory are set to their conjectured exact values, and it is for these 
values that the agreement is obtained. A new computational technique based on 
dividing the problem into a set of smaller subproblems was developed and the resulting 
implementation shown to be considerably faster than previously described methods. 
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